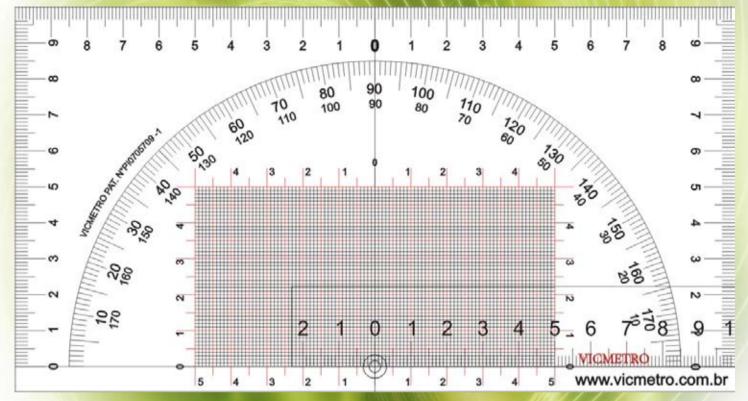
Vicente Parra Filho



Trigonometria TEORIA & PRÁTICA ENFIM JUNTAS

Vicente Parra Filho					
TRIGONOMETRIA: TEORIA & PRÁTICA ENFIM JUNTAS					
Esta obra é protegida por direitos autorais. Fica vetado a gravação, armazenamento em sistema eletrônico, fotocópia, reprodução por meios mecânicos ou quaisquer outros meios de impressão sem a prévia autorização do autor/editor.					

A Deus, à minha família e a todos que colaboraram

Para a realização desse trabalho

A minha mãe Nair (em memória)

Ao meu pai Vicente

E, em especial, a minha esposa Regina

Sumário

I.	O Vicmetro	05
	1. Definição	05
	2. Funcionamento	07
	3. Aplicação	07
II.	Breve Revisão da Trigonometria	08
	1. A trigonometria	08
	2. O círculo trigonométrico	08
	3. Ângulos	09
	3.1 Tipos de Ângulos	10
	3.2 Tipos de Ângulos no Vicmetro	10
	4. Triângulos	12
	4.1 Triângulo Isóceles	12
	4.2 Triângulo Escaleno	12
	4.3 Triângulo Acutângulo	13
	4.4 Triângulo Equilátero	13
	4.1 Triângulo Retângulo	13
	5. O Teorema de Pitágoras e o triângulo retângulo	14
III.	Exemplos Comparativos	15
IV.	Exemplos Práticos	33
	Apêndice	36
	Vicmetro (instrumento)	

Prefácio

Durante 25 anos trabalhei como ferramenteiro na Volkswagen do Brasil, indústria metalúrgica automotiva sediada em São Bernardo do Campo, onde me aposentei.

Minha função era confeccionar dispositivos de montagem, controle de medidas e ferramentas de corte e repuxo, para modelar a forma e o perfil adequado das peças necessárias à montagem do conjunto completo da carroçaria do automóvel.

Para tanto, alguns conceitos básicos da matemática, (trigonometria), eram fundamentais para a definição de ângulos, pontos de medição, entre outros.

Acredito que esse trato diário tenha ressoado e se alojado em meu cérebro de maneira que me possibilitou desenvolver um instrumento que une a teoria e a prática da Trigonometria.

Assim, o presente livro expõe tal instrumento, ao qual denominei de VICMETRO®, e traça um comparativo entre a resolução de exercícios da maneira comum, através das fórmulas, e da maneira prática, através do Vicmetro.

Para facilitar o entendimento do projeto, dividimos o livro em quatro blocos:

I – Apresentação do Vicmetro

II – Breve revisão da Trigonometria

III – Exemplos comparativos

IV - Exemplos práticos

Campinas, 30 de Dezembro de 2010 Vicente Parra Filho www.vicmetro.com.br contato@vicmetro.com.br

I. O Vicmetro®

1. DEFINIÇÃO

Por definição, o Vicmetro® é um instrumento tecnológico de medição e aferição de ângulos, catetos, hipotenusas e cálculos trigonométricos.

Traduzindo, o instrumento desenvolvido proporciona a leitura direta dos elementos matemáticos acima elencados, ou seja, possibilita respostas imediatas aos exercícios sem o uso de calculadoras, tabelas de seno, cosseno, tangente e co-tangente, apresentando grande eficiência para medir, aferir, conferir e transferir ângulos e na solução de cálculos trigonométricos.

Antes de qualquer explicação, abaixo está a figura do instrumento desenvolvido.

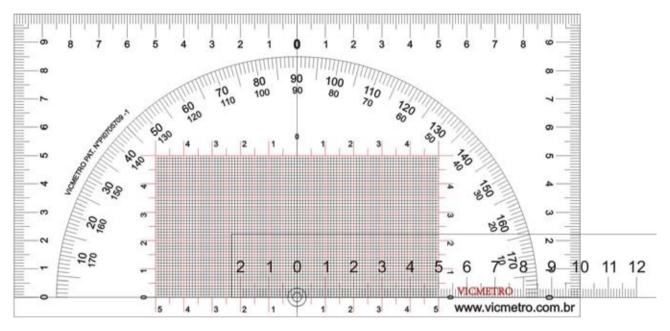


Fig. 1

O instrumento é a junção de duas peças:

- Um retângulo central com coordenadas horizontais e verticais em escala milimétrica, interno a um transferidor de graus que, por sua vez, está inserido em um retângulo maior com as laterais em escala milimétrica;
- Uma régua articulada milimétrica fixada ao centro do retângulo central.

O funcionamento do projeto consiste em se trabalhar com ambas as peças supracitadas em busca de variáveis desconhecidas (catetos, oposto e adjacente, hipotenusa e ângulo) de algum exercício proposto.

Exemplificando:

Propõe-se calcular a hipotenusa e o ângulo α do triângulo ABC.

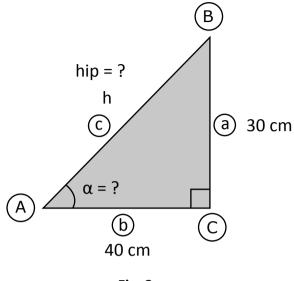


Fig. 2

Método tradicional (teoria):

Temos que b = 40 cm e a = 30 cm e queremos calcular c (hipotenusa) e α .

Pelo Teorema de Pitágoras temos que:

$$c^2 = b^2 + a^2$$

$$c^2 = (40)^2 + (30)^2$$

$$c^2 = 1600 + 900$$

$$C^2 = 2500$$

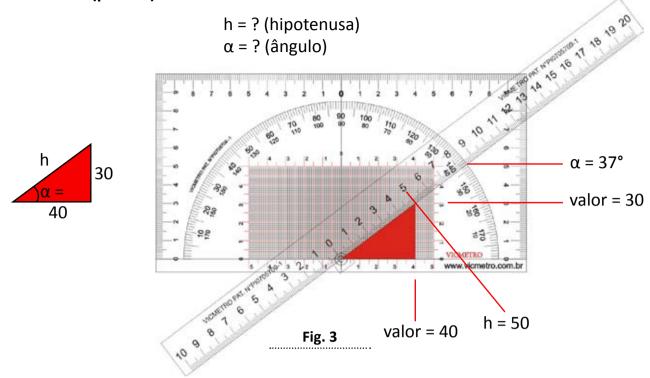
Extraindo a raiz quadrada de ambos os lados temos que c = 50, logo a hipotenusa é igual a 50 cm.

Para obtermos o ângulo α basta aplicar a seguinte fórmula:

$$Sin(\alpha) = co / hip Sin(\alpha) = 30 / 50 = 0.6.$$

Como $sin(\alpha) = 0.6$, através da tabela trigonométrica temos que $\alpha = 37^{\circ}$.

Vicmetro® (prática):



2. FUNCIONAMENTO

No instrumento, basta simular a figura e através da movimentação manual da régua giratória fácil e rapidamente obteremos as medidas procuradas.

Observe que α será encontrado a partir do cruzamento da régua giratória com o transferidor e que a medida da hipotenusa ficará explícita na própria régua.

No bloco III traremos exemplos traçando o comparativo das resoluções, não antes de revisarmos de maneira rápida e sintética alguns tópicos essenciais da trigonometria.

3. APLICAÇÃO

Propomos a utilização deste instrumento inovador nas áreas didático-pedagógica, técnico-tecnológica, engenharia, construção civil e projetos arquitetônicos.

Tais áreas são demandantes de cálculos trigonométricos fazendo a utilização de réguas, calculadoras, transferidores e tabelas de cálculos de senos, cossenos, tangentes e co-tangentes, dentre outros.

É nesse contexto que acreditamos que o projeto deva ser aplicado, uma vez que se trata de um ferramental analógico de fácil leitura, leve, preciso, versátil e de simples manuseio, indispensável nas escolas, indústrias e construção civil.

Nas escolas, em especial na área trigonométrica, sua utilização dará um teor mais prático ao aprendizado além de poder ser utilizado como forma de consulta às respostas.

II. Breve revisão da Trigonometria

1. A TRIGONOMETRIA

A trigonometria é um ramo da Matemática que estuda as relações entre lado e ângulos de polígonos de três lados, ou seja, triângulos. A trigonometria por sua vez subdivide-se em plana e esférica.

A ciência teve início nas civilizações babilônicas e egípcia, tendo se desenvolvida por toda a Antiguidade graças aos estudos de gregos e indianos.

A partir do século XV, matemáticos Ocidentais deram início ao que conhecemos por Trigonometria Moderna, com a invenção dos logaritmos pelo escocês John Napier e do cálculo diferencial e integral por Isaac Newton que em muito auxiliaram os cálculos trigonométricos.

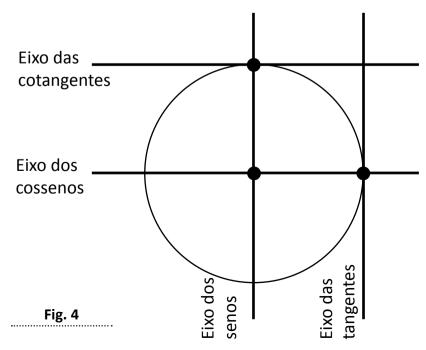
Hodiernamente seu aprendizado é iniciado a partir da nona série do Ensino Fundamental até o terceiro ano do Ensino Médio.

2. O CÍRCULO TRIGONOMÉTRICO

O círculo trigonométrico, como o próprio nome diz, é um círculo e tem seu centro localizado na origem do plano cartesiano e raio igual ao valor de uma unidade.

Ele tem importantes e essenciais aplicações na Trigonometria, mais especificamente nas funções trigonométricas.

Através dele podemos, por exemplo, estudar o seno, cosseno e tangente dos ângulos.



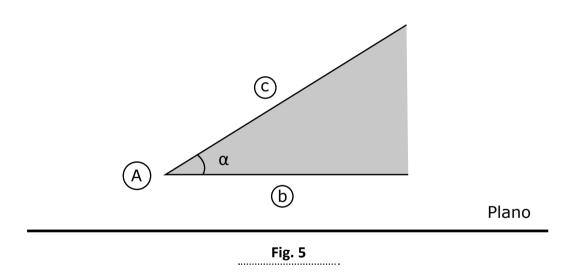
O seno, tecnicamente falando, é a projeção do eixo vertical do segmento de reta que parte do centro do círculo trigonométrico até a circunferência. Algebricamente falando, é a razão entre o cateto oposto a um ângulo de um triângulo retângulo e a hipotenusa.

Da mesma maneira, o cosseno é a projeção do eixo horizontal, ou a relação entre o cateto adjacente a um ângulo de um triângulo retângulo e a hipotenusa.

A tangente é a proporção entre o cateto oposto e o cateto adjacente. A cotangente, por sua vez, é o inverso da tangente.

3. ÂNGULOS

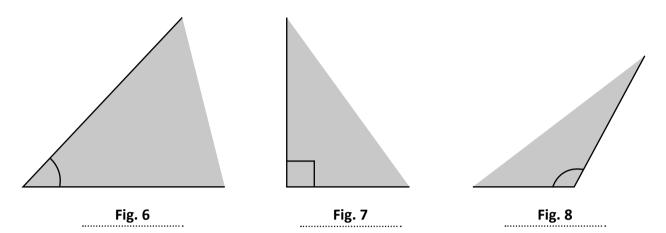
Ângulo é a região do plano limitada por duas semi-retas de mesma origem, denominada vértice do ângulo. Sua abertura pode variar de 0 a 360 e é aferida em radianos ou graus.



As retas c e b têm origem em um ponto comum A, que é o vértice do ângulo em questão.

3.1 TIPOS DE ÂNGULOS

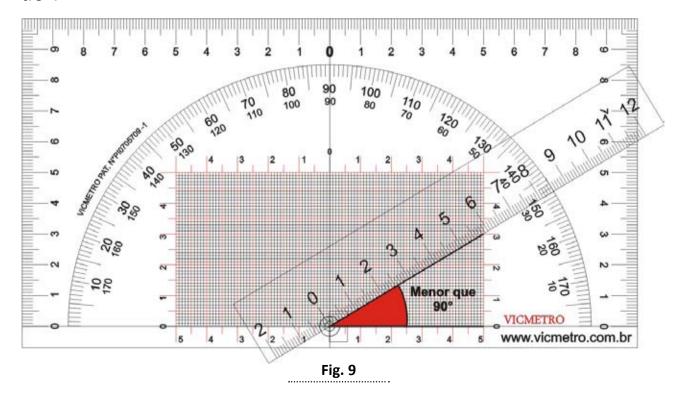
Tendo definido ângulo, podemos classificá-los de acordo com sua abertura. Observe as figuras abaixo:

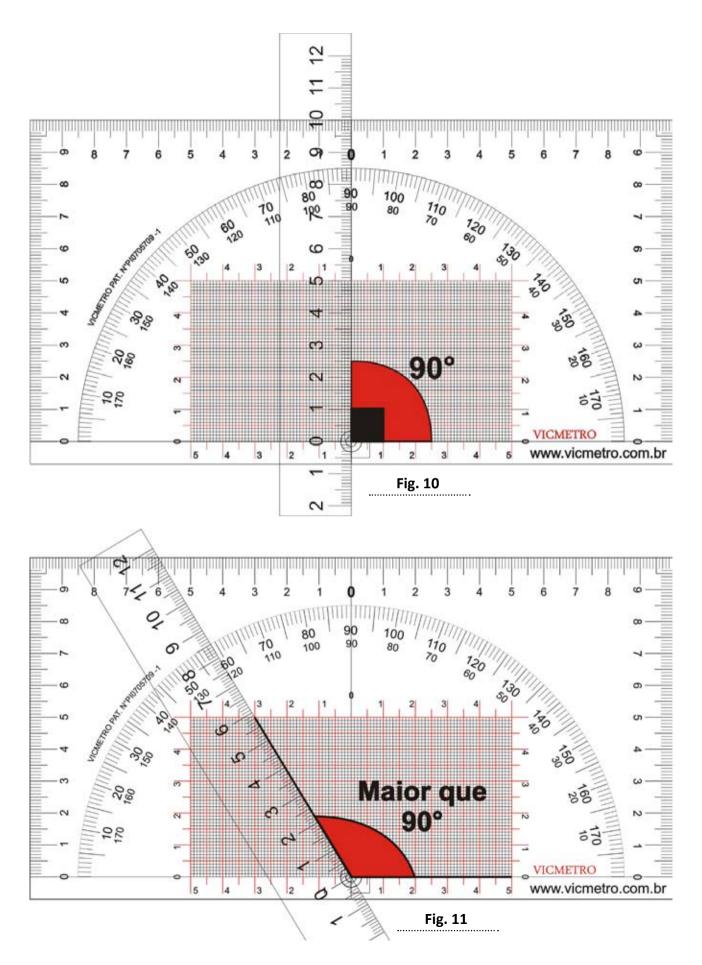


Ângulo agudo é aquele cuja abertura é inferior a 90° (imagem à esquerda). **Ângulo reto** é aquele cuja abertura é exatamente igual a 90° (imagem central) **Ângulo obtuso** é aquele cuja abertura é superior a 90° (imagem à direita).

3.2 TIPOS DE ÂNGULOS NO VICMETRO

Observe nas figuras a seguir a representação desses três tipos de ângulos no Vicmetro[®].





4. TRIÂNGULOS

O triângulo é um polígono definido por três linhas que formam três lados e três ângulos.

A soma dos ângulos internos de um triângulo é sempre igual a 180°.

Da mesma maneira que podemos classificar os ângulos de acordo com sua abertura, classificamos os triângulos de acordo com os ângulos que o compõem. Nesse sentido surgem 5 classificações latentes.

4.1 Triângulo Isóceles

É formado por dois lados e dois ângulos internos agudos iguais.

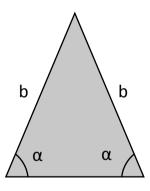
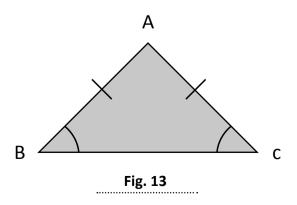


Fig. 12

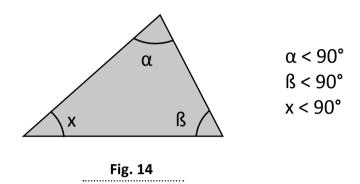
4.2 Triângulo Escaleno

É formado por três lados e três ângulos internos diferentes, sendo um ângulo obtuso e dois agudos.



4.3 Triângulo Acutângulo

É formado por três lados e três ângulos internos agudos diferentes. Assim, todos os ângulos internos têm abertura inferior a 90°.



4.4 Triângulo Equilátero

É formado por três ângulos agudos e três lados iguais.

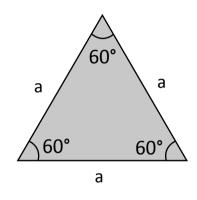
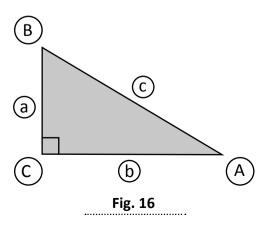


Fig. 15

4.5 Triângulo Retângulo

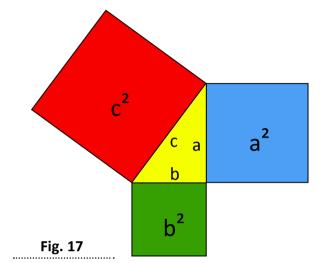
É formado por um ângulo reto e dois ângulos internos agudos.



5. O TEOREMA DE PITÁGORAS E O TRIÂNGULO RETÂNGULO

Sabemos que o triângulo retângulo é um polígono que apresenta propriedades e relações especiais entre seus lados e ângulos, todavia poucos sabem a partir de quais premissas essas particularidades são advindas.

Pitágoras foi um matemático grego e fundador da Escola Pitagórica. A partir de três quadrados foi que Pitágoras elaborou o enunciado tão famoso de seu teorema: "Em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos".



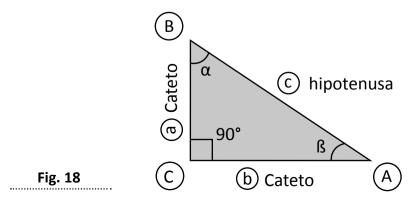
Repare na figura a especial relação entre as áreas dos quadrados desenhados a partir e sobre os lados do triângulo central. A partir dela afirma-se que "em qualquer triângulo retângulo, a área do quadrado cujo lado é a hipotenusa é igual à soma das áreas dos quadrados cujos lados são os catetos".

A partir dos dois enunciados supracitados temos a famosa fórmula:

$$(hipotenusa)^2 = (cateto adjacente)^2 + (cateto oposto)^2$$

A hipotenusa é sempre o maior dos lados do triângulo retângulo.

Cateto adjacente é aquele que fica ao lado do ângulo em questão (que faz adjacência ao ângulo em questão) e o cateto oposto, por sua vez e como o próprio nome diz, fica em situação de oposição ao ângulo em questão, ficando de fronte a ele.



III. Exemplos Comparativos

Neste bloco traremos diversos exercícios. Demonstraremos suas resoluções através do método tradicional, ou seja, através das fórmulas inerentes (teórico) e com a utilização do Vicmetro® (prática), sugerindo que seja utilizado como gabarito ou para resolução direta.

A sequência para cada exercício proposto (EP) será: enunciado do exercício, resolução método teórico (MT) e resolução método prático (MP).

EP.01 – No triângulo abaixo, calcule o ângulo α e a medida da hipotenusa h.

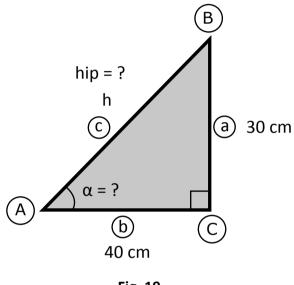


Fig. 19

MT. Aplicando o Teorema de Pitágoras temos:

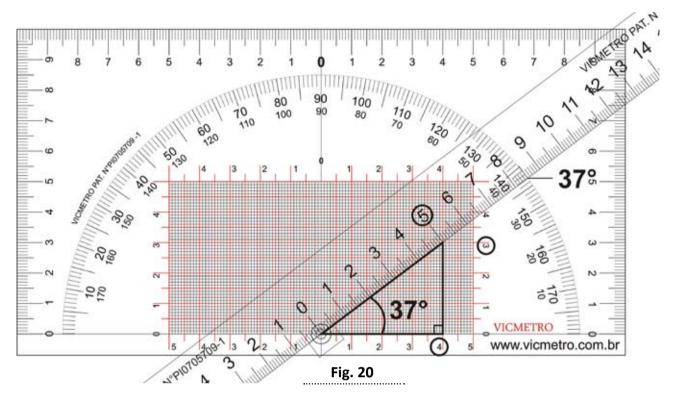
$$b^{2} + a^{2} = h^{2}$$

 $(40)^{2} + (30)^{2}$
 $1600 + 900 = 2500$
 $\sqrt{2500} = 50$
Logo h = 50 cm.

Da fórmula temos que $tg(\alpha)$ = cateto oposto/cateto adjacente $tg(\alpha)$ = a/b = 30/40 Logo $tg(\alpha)$ = 0,75. Através da tabela trigonométrica podemos concluir que α =37°.

```
Seno \alpha = co / hip
Seno \alpha = 30/50 = 0,60
Seno \alpha = 0,60 (conforme tabela, corresponde a 37°)
Seno \alpha = 37°
```

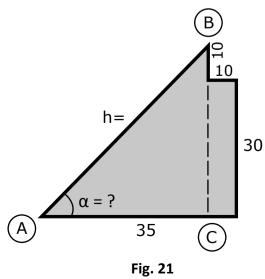
MP. Aplicação do instrumento



Após simular o triângulo no instrumento, mova a régua giratória sobre a hipotenusa. Facilmente teremos os resultados procurados, como podemos observar na figura 20

Ângulo = 37° hipotenusa = 50

EP.02 – Na figura abaixo calcule h e α .



MT – Repare que na própria figura do enunciado traçamos uma linha pontilhada para facilitar na resolução do exercício. Com ela formamos um triângulo imaginário dentro da figura. Então temos:

$$tg(\alpha)$$
 = cateto oposto / cateto adjacente = (30+10) / (35-10)

 $tg(\alpha) = 40/25 = 1.6$ Com a tabela trigonométrica chegamos a $\alpha = 58^{\circ}$

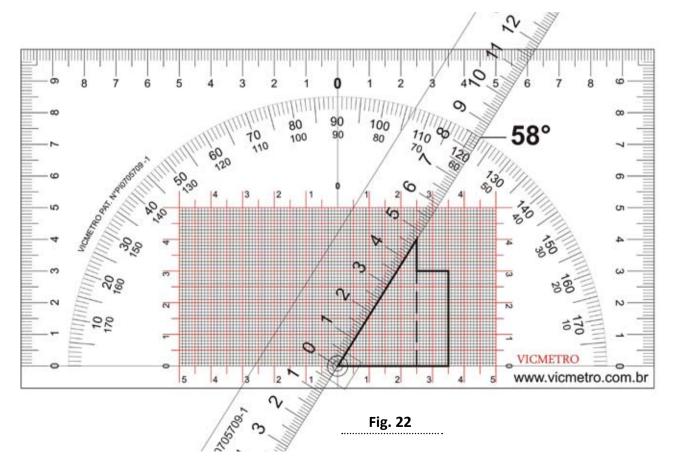
 $h = cateto oposto / sin(\alpha) = 40 / 0.848$

RESPOSTAS

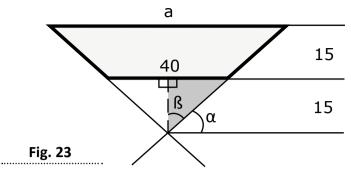
h = 47,16 cm

 $\alpha = 58^{\circ}$

MP – Aplicação do instrumento.



EP.03 – Calcule na figura abaixo o valor da medida a e do ângulo α .



 \mathbf{MT} – Repare que temos um triângulo isóceles formado na parte inferior da figura. Repare ainda que α é um ângulo externo ao triângulo formado. Se dividirmos esse triângulo isóceles ao meio formaremos um triângulo retângulo:

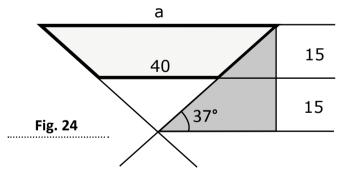
Assim, a resolução do exercício torna-se mais fácil.

tg(ß) = cateto oposto / cateto adjacente = 20 / 15

 $Tg(\beta) = 1,33 \Rightarrow Através da tabela trigonométrica temos que \beta = 53^{\circ}.$

Como α e β são complementares, ou seja, formam um ângulo de 90°, temos: $90^\circ = \alpha + 53^\circ \Rightarrow \alpha = 90^\circ - 53^\circ \Rightarrow \alpha = 37^\circ$

Com o valor de α conhecido, podemos trabalhar na figura inicial e formar a seguinte figura:



Se prestarmos bem atenção, concluímos que a base desse novo triângulo formado é exatamente a metade da medida a.

Logo temos:

 $tg(\alpha)$ = cateto oposto / cateto adjacente \Rightarrow $tg(37^\circ)$ = cateto oposto / cateto adjacente 0,7536 = 30 / cateto adjacente \Rightarrow cateto adjacente = 30 / 0,7536 = 39,8 cm a = 2 . 39,8 = 79,6 cm

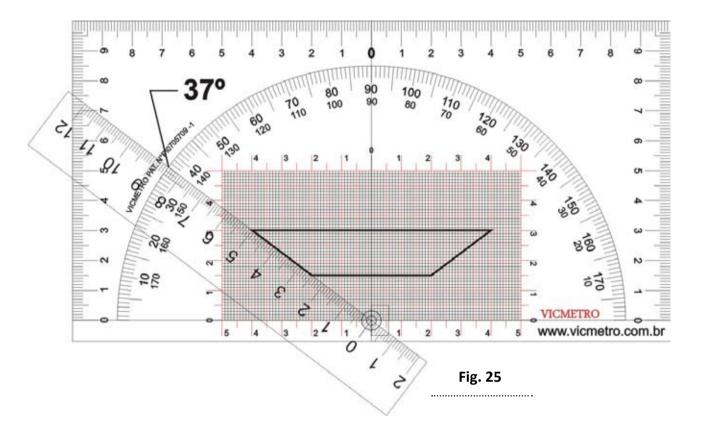
RESPOSTAS

$$a = 79,6 \text{ cm}$$

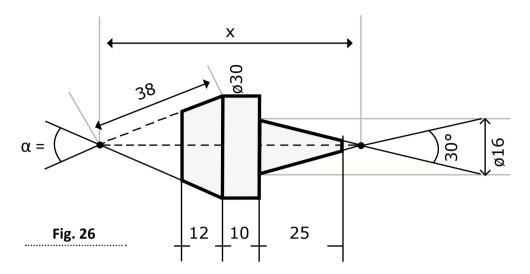
 $\alpha = 37^{\circ}$

MP – Aplicação do instrumento

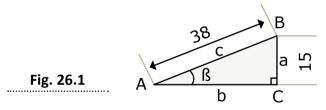
Resolução do exercício proposto



EP.04 – Calcule o comprimento do material necessário da medida x e o ângulo α da peça conforme figura abaixo



MT – Repare que traçamos linhas pontilhadas para facilitar na resolução do exercícios. Com elas formamos um triângulo imaginário dentro da figura.



ß = Ângulo em questão

Seno ß = co / hip

Seno ß = 15 / 38 = 0,3947

Seno $\beta = 23^{\circ}$. $2 = \hat{a}$ ngulo $\alpha = 46^{\circ}$

 $\alpha = 46^{\circ}$

Calcular b - Teorema de Pitágoras

 $ca^2 = hip^2 - co^2$

 $ca^2 = 38^2 - 15^2 = 1219$

ca = 34.91

RESPOSTAS

Ângulo = 46°

Medida x = 34,91 + 10 + 29,86 = 74,77

Medida x = 74,77

MP – Aplicação do instrumento

Resolução do exercício proposto

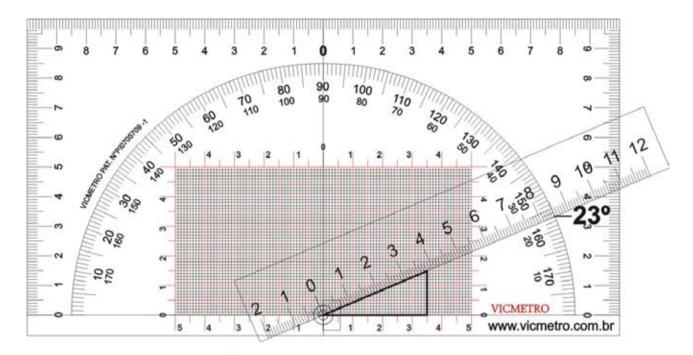


Fig. 27

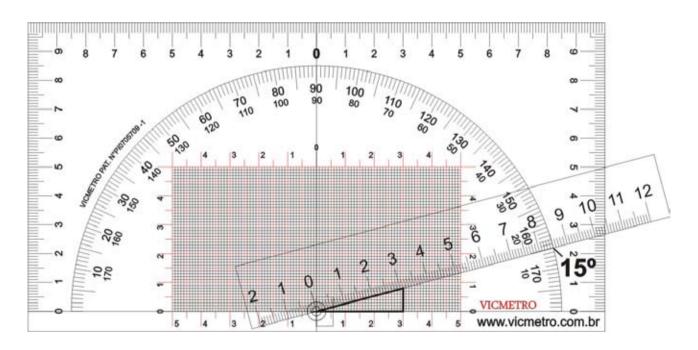
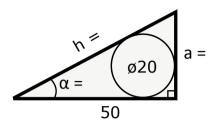


Fig. 28

EP.05 – No triângulo abaixo, calcular o ângulo (α), a medida da hipotenusa (h) e o cateto oposto (a)

MT – Para facilitar, vamos calcular conforme sequência das figuras abaixo.



Ângulo (α)
Hipotenusa (h)
Cateto oposto (a)

Fig. 29

Segue sequência de cálculos nas figuras abaixo

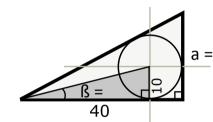


Fig. 29.1

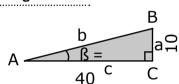


Fig. 29.2

ß = Ângulo em questão

Tang $\beta = co / ca$

Tang $\beta = 10 / 40 = 0.25$

Tang ß = 14°

ângulo $\alpha = 2 . 14^{\circ} = 28^{\circ}$

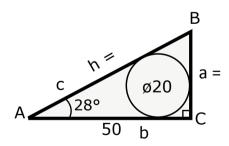


Fig. 29.3

Hipotenusa = (c) α = Ângulo em questão Cosseno = ca / hip hipotenusa = ca/cosseno

hip = 50 / 0,8829

hip (c) = 56,63

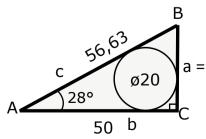


Fig. 29.4

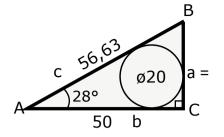
Cateto oposto

Tang = co / ca

co (a) = tang / ca

co = 0,5317.50

co(a) = 26,58



Cateto oposto - teorema de pitágoras

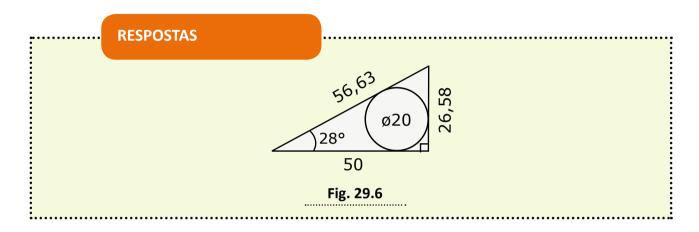
$$co = hip^2 - ca^2$$

$$co = hip^2 - ca^2$$

 $co = 56,63^2 - 50^2$

$$co(a) = 26,58$$

Fig. 29.5



MP – Aplicação do instrumento

Resolução do exercício proposto

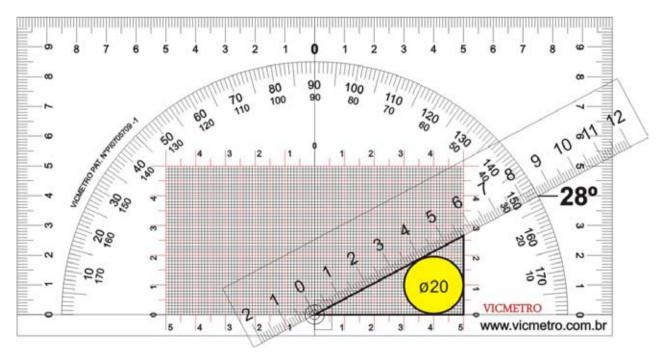
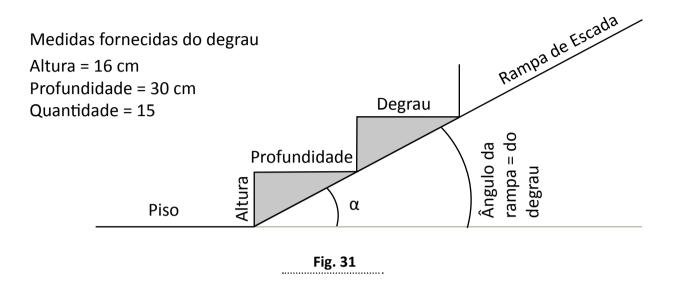


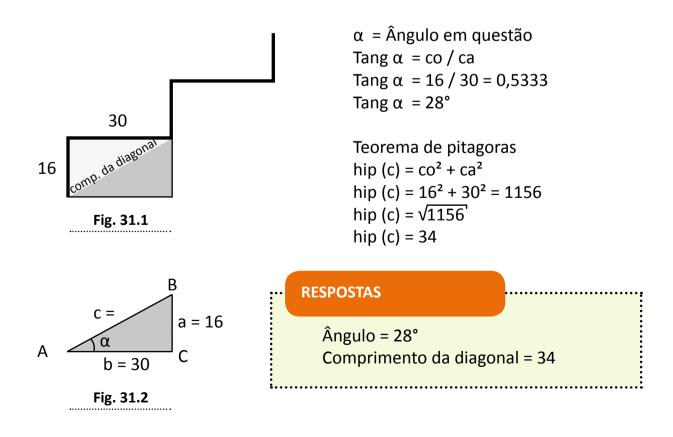
Fig. 30

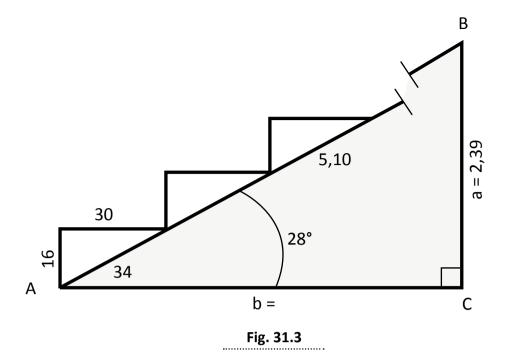
EP.06 – Calcular o ângulo (α), as medidas de comprimento e altura de uma escada conforme figura abaixo considerando um total de quinze degraus.

MT – Para facilitar, calcular conforme seqüência das figuras abaixo.



Calcular comprimento da diagonal e ângulo do degrau e da rampa.





Quantidade de degraus . comprimento da diagonal = comprimento da rampa 15 . 34 = 510 (5.10m)

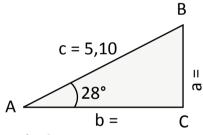


Fig. 31.4

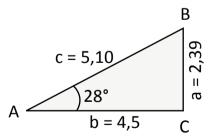


Fig. 31.5

Calcular medida a e b que corresponde a estrutura da escada.

RESPOSTAS

Degrau

Altura = 16

Profundidade = 30

Comprimento da diagonal = 34

Ângulo = 28°

Rampa

Altura = 2,39

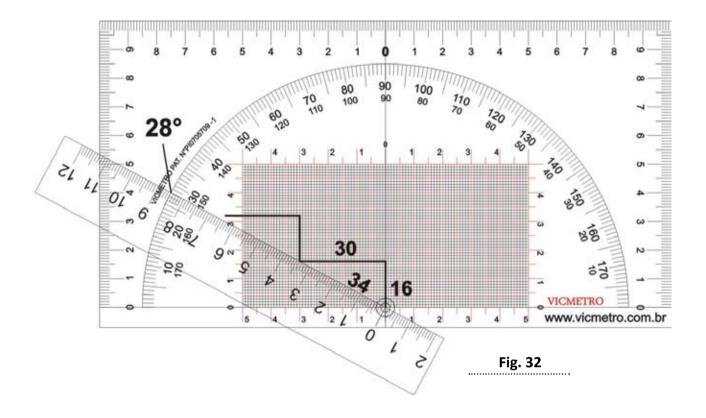
Comprimento da base = 4,5

Comprimento da diagonal = 5,1

Ângulo = 28°

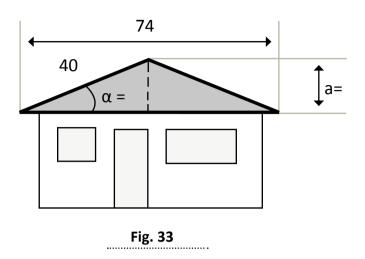
MP – Aplicação do instrumento

Resolução do exercício proposto



EP.07 – Calcular o ângulo (α) e altura (a) da figura abaixo.

MT – A linha pontilhada no meio é para facilitar o cálculo.



MP – Aplicação do instrumento

Resolução do exercício proposto

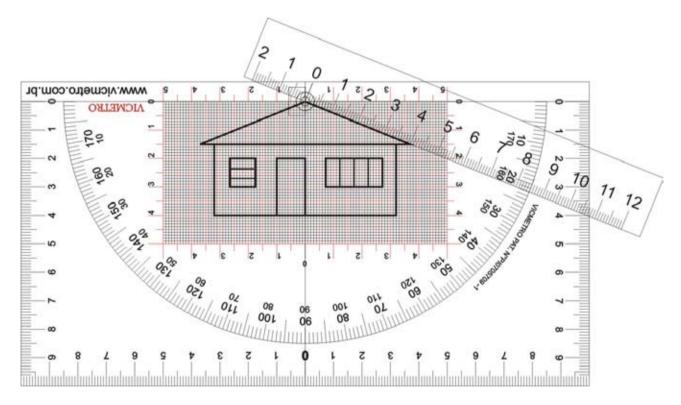
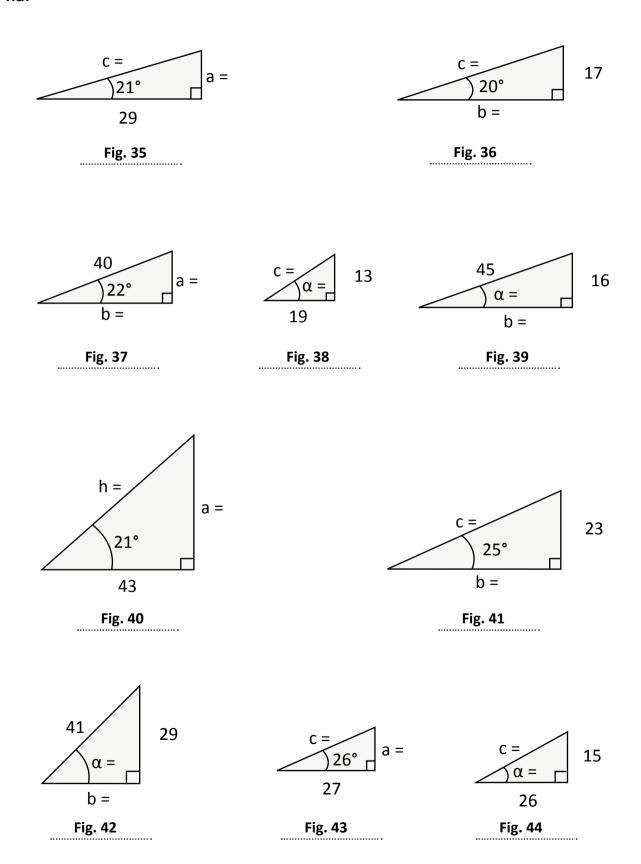


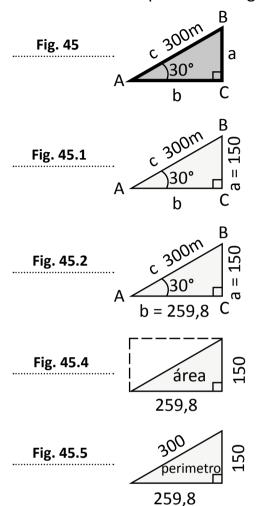
Fig. 34

Exemplos para treinamento no manuseio do gabarito (vicmetro) última página.



EP.08 – Calcular área e perimetro do triângulo retangulo conforme figura abaixo

MT – Conforme seqüência das figuras abaixo



Teorema de Pitágoras

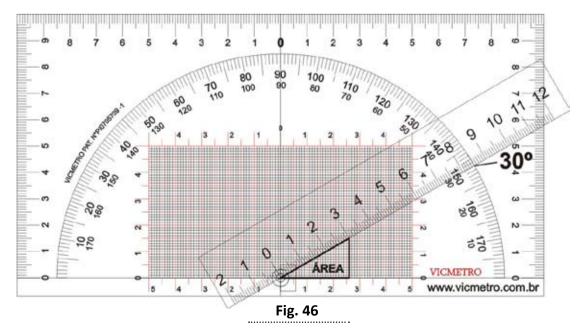
hip =
$$co^2 + ca^2$$

 ca^2 (b) = $hip^2 - co^2$
 ca^2 (b) = $300^2 - 150^2 = 67,500$
 ca^2 (b) = $\sqrt{67,500}$ = 259,80m
Área = 259,8 . 150 / 2 = 19485 m²
Perimetro = $300 + 150 + 259,8 = 709,8$ m

RESPOSTAS

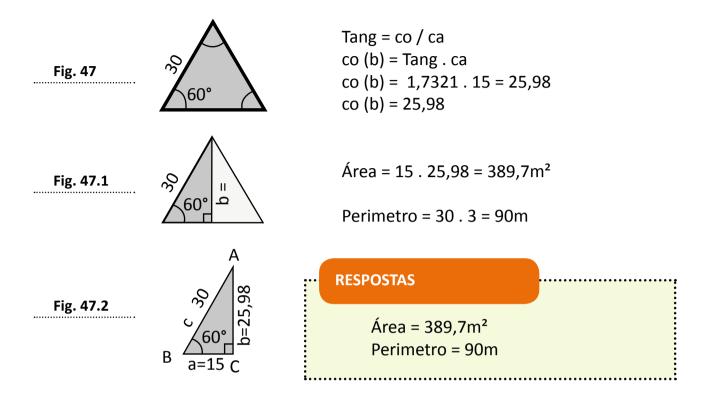
Área = 19485m² Perímetro = 709,8m

MP – Aplicação do instrumento.

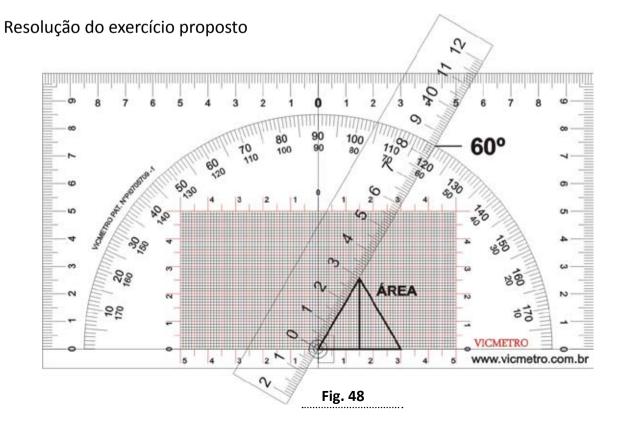


EP.09 – Calcular área e perímetro do triângulo equilatero conforme figura abaixo

MT – Conforme seqüência das figuras abaixo

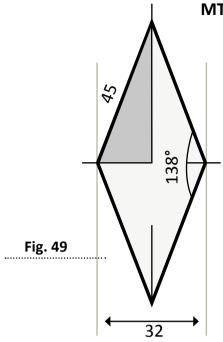


MP – Aplicação do instrumento



EP.10 – Calcular área e perímetro do losango conforme figura abaixo

MT – Conforme seqüência das figuras abaixo



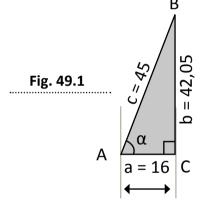
$$co(b) = hip^2 - ca^2$$

$$co(b) = 45^2 - 16^2$$

co (b) =
$$\sqrt{1769}$$
 = 42,05

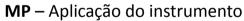
Área =
$$672,8 \cdot 2 = 1345,6m^2$$

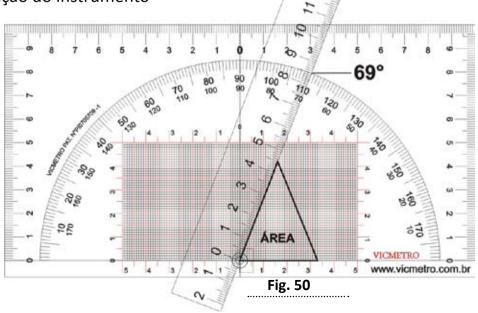
Perimetro = 45 . 4 = 180 m



RESPOSTAS

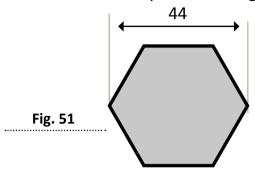
Área = 1345,6m² Perimetro = 180m

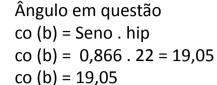


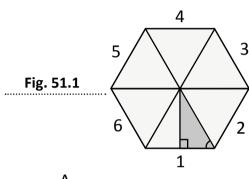


EP.11 – Calcular área e perímetro do triângulo hexágono conforme figura abaixo

MT – Conforme seqüência das figuras abaixo

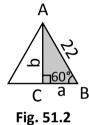






Área = a . b . 6 Área = 11 . 19,05 . 6 = 1257,3m² Área = 1257,3m²

Perimetro = a . 2 . 6 Perimetro = 11 . 2 . 6 = 132m Perimetro = 132m

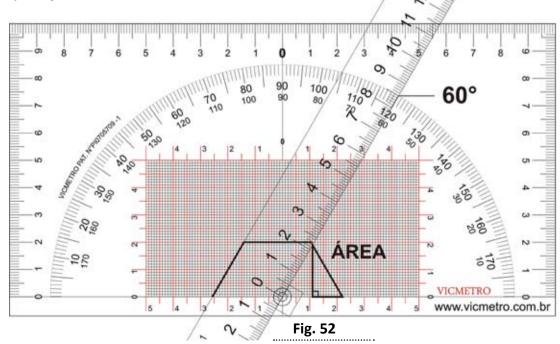


a=11 Fig. 51.3

RESPOSTAS

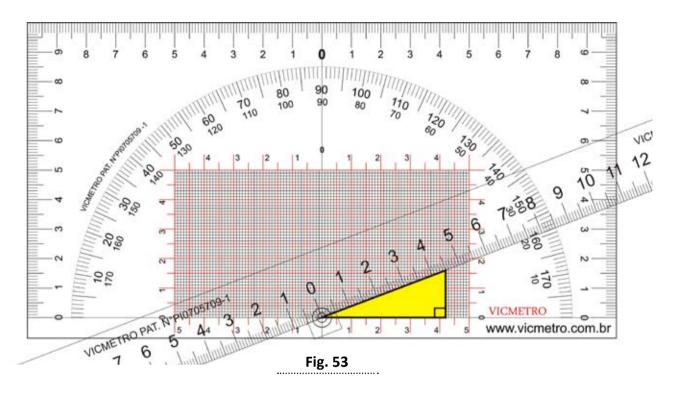
Área = 1257,3m² Perimetro = 132m

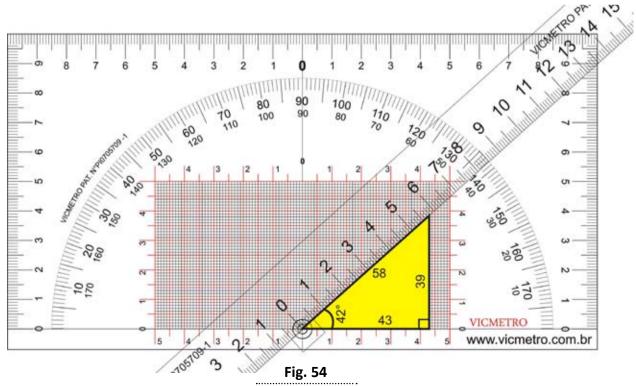
MP – Aplicação do instrumento

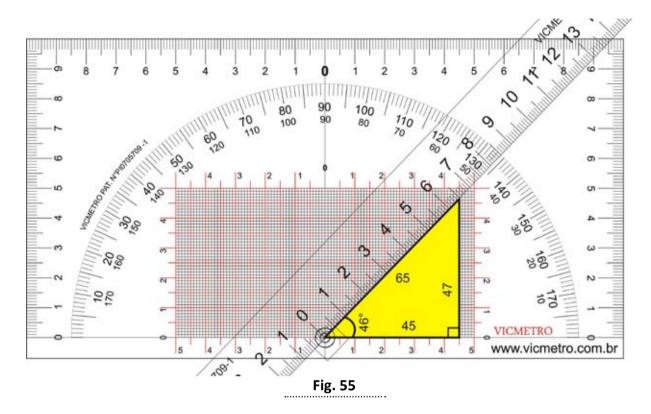


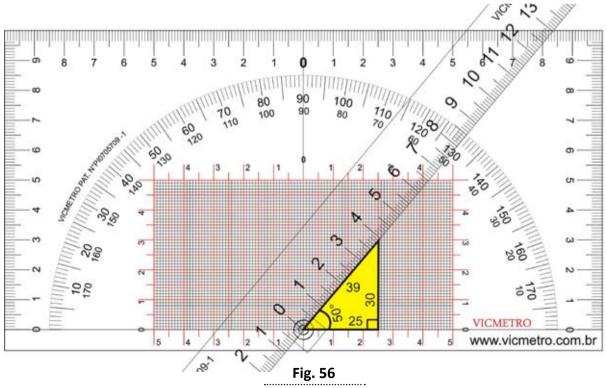
IV. Exemplos Práticos

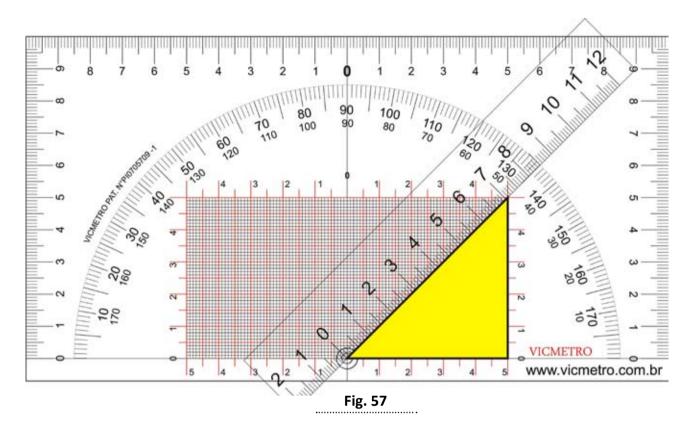
Figuras para orientação e aplicação prática do instrumento.











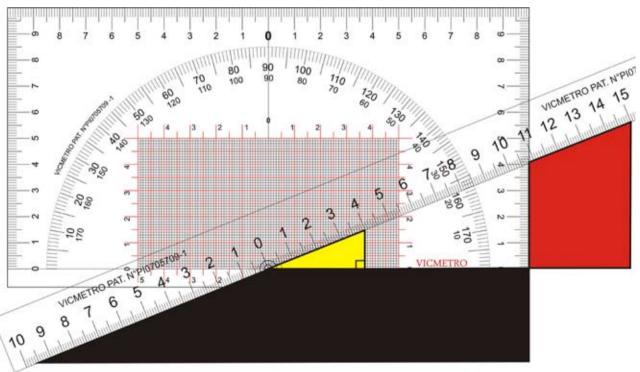


Fig. 58

Apêndice

- 1) Abreviaturas e símbolos
- 2) Teorema de pitágoras e fórmula
- 3) Tabela trigonométrica
- 4) Fórmula para cálculos de medida do hexágono

1. Abreviaturas e Símbolos

sin = Seno co = Cateto oposto cos = Cosseno ca = Cateto adjacente

tg = tangente ° = Graus

cotg = cotangente ' = Minutos

hip = Hipotenusa '' = Segundos

2. Teorema de Pitágoras e Fórmulas

TEOREMA DE PITÁGORAS

$$(hip)^2 = (co)^2 + (ca)^2$$

$$(co)^2 = (hip)^2 - (ca)^2$$

$$(ca)^2 = (hip)^2 - (co)^2$$

FÓRMULAS

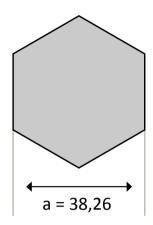
 $\sin = \frac{co}{hip}$ $hip = \frac{co}{sin}$ $co = \frac{sin.hip}{ca = \frac{cos.hip}{ca = \frac{cos}{tg}}$

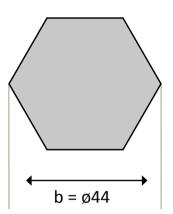
3. Tabela Trigonométrica

Ângulo	Seno	Cosseno	Tangente	Ângulo	Seno	Cosseno	Tangente
1°	0,0175	0,9998	0,0175	46°	0,7193	0,6947	1,0355
2°	0,0349	0,9994	0,0349	47°	0,7314	0,6820	1,0724
3°	0,0523	0,9986	0,0524	48°	0,7431	0,6691	1,1106
4°	0,0698	0,9976	0,0699	49°	0,7547	0,6561	1,1504
5°	0,0872	0,9962	0,0875	50°	0,7660	0,6428	1,1918
6°	0,1045	0,9945	0,1051	51°	0,7771	0,6293	1,2349
7°	0,1219	0,9925	0,1228	52°	0,7880	0,6157	1,2799
8°	0,1392	0,9903	0,1405	53°	0,7986	0,6018	1,3270
9°	0,1564	0,9877	0,1584	54°	0,8090	0,5878	1,3764
10°	0,1736	0,9848	0,1763	55°	0,8192	0,5736	1,4281
11°	0,1908	0,9816	0,1944	56°	0,8290	0,5592	1,4826
12°	0,2079	0,9781	0,2126	57°	0,8387	0,5446	1,5399
13°	0,2250	0,9744	0,2309	58°	0,8480	0,5299	1,6003
14°	0,2419	0,9703	0,2493	59°	0,8572	0,5150	1,6643
15°	0,2588	0,9659	0,2679	60°	0,8660	0,5000	1,7321
16°	0,2756	0,9613	0,2867	61°	0,8746	0,4848	1,8040
17°	0,2924	0,9563	0,3057	62°	0,8829	0,4695	1,8807
18°	0,3090	0,9511	0,3249	63°	0,8910	0,4540	1,9626
19°	0,3256	0,9455	0,3443	64°	0,8988	0,4384	2,0503
20°	0,3420	0,9397	0,3640	65°	0,9063	0,4226	2,1445
21°	0,3584	0,9336	0,3839	66°	0,9135	0,4067	2,2460
22°	0,3746	0,9272	0,4040	67°	0,9205	0,3907	2,3599
23°	0,3907	0,9205	0,4245	68°	0,9272	0,3746	2,4751
24°	0,4067	0,9135	0,4452	69°	0,9336	0,3584	2,6051
25° 26°	0,4226	0,9063	0,4663	70°	0,9397	0,3420	2,7475
20 27°	0,4384 0,4540	0,8988 0,8910	0,4877 0,5095	71° 72°	0,9455 0,9511	0,3256 0,3090	2,9042 3,0777
28°	0,4540	0,8910	0,5317	73°	0,9563	0,3090	3,0777
29°	0,4848	0,8329	0,5543	74°	0,9613	0,2756	3,4874
30°	0,5000	0,8660	0,5774	75°	0,9659	0,2588	3,7321
31°	0,5150	0,8572	0,6009	76°	0,9703	0,2419	4,0108
32°	0,5299	0,8480	0,6249	77°	0,9744	0,2250	4,3315
33°	0,5446	0,8387	0,6494	78°	0,9781	0,2079	4,7046
34°	0,5592	0,8290	0,6745	79°	0,9816	0,1908	5,1446
35°	0,5736	0,8192	0,7002	80°	0,9848	0,1736	5,6713
36°	0,5878	0,8090	0,7265	81°	0,9877	0,1564	6,3138
37°	0,6018	0,7986	0,7536	82°	0,9903	0,1392	7,1154
38°	0,6157	0,7880	0,7813	83°	0,9925	0,1219	8,1443
39°	0,6293	0,7771	0,8098	84°	0,9945	0,1045	9,5144
40°	0,6428	0,7660	0,8391	85°	0,9962	0,0872	11,4301
41°	0,6561	0,7547	0,8693	86°	0,9976	0,0698	14,3007
42°	0,6691	0,7431	0,9904	87°	0,9986	0,0523	19,0811
43°	0,6820	0,7134	0,9325	88°	0,9994	0,0349	28,6363
44°	0,6947	0,7193	0,9657	89°	0,9998	0,0175	57,290
45°	0,7071	0,7071	1,0000	90°	1,0000	0	

4. Fórmula para cálculos de medida do hexagono

Fórmula para calcular a medida parela e a medida da diagonal do hexágono conforme figura abaixo:





Para conseguirmos medida (b) multiplicamos (a) 38,26 por 1,15 Para conseguirmos medida (a) dividimos (b) ø44 por 1,15 1,15 (constante) aplicada para conhecermos essas medidas

EXEMPLOS

Medida (a) = 50,80 . 1,15	Medida (b) = ø58,40
Medida (a) = 25,40 . 1,15	Medida (b) = ø29,2
Medida (a) = 22,20 . 1,15	Medida (b) = \emptyset 25,3
Medida (a) = 19,05 . 1,15	Medida (b) = ø21,90
Medida (a) = 12,70 . 1,15	Medida (b) = \emptyset 14,90

Referências

CASILLAS, A.L., **Máquinas - Formulário Técnico.** Ed. Mestre Jou, São Paulo. 1981 SODRÉ, Ulysses. **Mátematica Essencial.** 2007 Disponível em: http://pessoal.sercomtel.com.br/matematica/trigonom/trigo04.htm Acesso em 10 jun. 2010